
High availability clustering of virtual machines -
possibilities and pitfalls

Paper for the talk at the 12th Linuxtag, May 3rd-6th, 2006, Wiesbaden/Germany
Version 1.01

Werner Fischer (wfischer(at)thomas-krenn.com) and
Christoph Mitasch (cmitasch(at)thomas-krenn.com)

THE WORK IS PROVIDED UNDER THE TERMS OF THE CREATIVE
COMMONS PUBLIC LICENSE ("CCPL"). The complete license is available
at: http://creativecommons.org/licenses/nd-nc/1.0/legalcode

Virtualization techniques are getting more and more popular. They allow to run
multiple virtual servers on a single physical machine. But in case of a hardware
outage, tens of virtual servers are down. This paper gives some insight how to
prevent this situation. “Problems of virtualization” discusses why it is
necessary to think about clustering in virtualized environments. Then, “Types
of virtualization” explains characteristics of different virtualization techniques
and shows some examples of virtualization. “HA cluster configurations in
virtual environments” looks into different kinds of possible cluster
configurations, their respective advantages and drawbacks, and possible
pitfalls. Finally “Examples” shows some concrete examples of HA (high
availability) clusters in virtual environments.

Problems of virtualization

Without virtualization, an outage of a single physical machine leads to the
outage of a single server. But if a physical machine uses virtualization
technologies, and tens of virtual servers are running on that single physical
machine, an outage of this machine causes much more trouble. With a single
outage tens of virtual servers are down. So taking precautions to prevent such
situations is critical in a virtualized environment. By combining virtualization
and HA clustering, it is possible to benefit from increased manageability and
savings from server consolidation through virtualization without decreasing
uptime of critical services [1].

Types of virtualization

Virtualization techniques are getting more and more popular. They allow to run
multiple virtual servers on a single physical machine. We refer to this virtual
servers as virtual machines. For the purpose of this paper, we distinguish
between three virtualization techniques:

● Hardware-Virtualization (e.g. QEMU [2], VMware [3])

Page 1

● Para-Virtualization (e.g. Xen [4], Denali [5], User Mode Linux [6])

● OS-Virtualization (e.g. OpenVZ [7], Linux-Vserver [8], Sun Solaris
Containers [9])

This definition is not suitable for all discussions about virtualization. Also some
overlapping between the three virtualization techniques is possible. Another
possible definition of virtualization techniques in Linux is shown in [10]. A
detailed survey of virtualization techniques can be found in [11].

The three techniques shown above differ not only in the kind of virtualization,
but also in the provided features. Virtualization is used for different reasons,
and necessary features vary depending on the purpose of an virtualized
environment. All techniques have different pros and cons, also in respect of
different kinds of clustering. We look at these three techniques more detailed
to be able to evaluate the three virtualization techniques for the use in
different kinds of cluster configurations.

Hardware-Virtualization

Hardware-virtualization provides virtual hardware to the virtual machines. It
allows to run guest operating systems in the virtual machines without any
modifications. The guest OSs are not aware that they are actually not running
on a physical computer – the virtual hardware seems like real hardware to
them.

Virtual hardware is provided through emulating this hardware with the help of a
virtual machine monitor (VMM). This VMM needs real resources from the
physical server, and can be implemented in two ways. It can be either host-
based, or not host-based. In the first case a host OS, host specific drivers and
some user-space code are necessary for virtual machines. Examples are QEMU
or VMware Workstation and VMware Server. In the other case the VMM is not
host-based. In [10] such a VMM is called a pure virtual machine monitor.
VMware ESX Server is an example for this. With this method, some of the
overhead that is necessary when running on top of a host OS can be removed,
and therefore performance within the virtual machine can be increased. On the
other side, such pure VMMs themselves must include more hardware support
than host-based VMMs have to (see [10] p. 587).

Para-Virtualization

Emulating hardware like in hardware-virtualization requires some additional
amount of resources. To avoid this drawback, some virtualization solutions
provide a virtual machine abstraction layer which is only similar to the
underlying hardware – but not identical. This approach is known as para-
virtualization [12], and promises improved performance compared to full
hardware-virtualization. As the abstraction is only similar to the underlying

Page 2

hardware, modifications to the guest operating systems are necessary. In this
way, the guest operating systems work co-operatively with the VMM (which is
often called hypervisor in this context). This has some advantages. For
example, the hypervisor can tell the guest that real time has passed between
its last run, and its present run, permitting it to make smarter re-scheduling
decisions to appropriately respond to a rapidly changing environment [13].

Examples of para-virtualization are Xen and Denali. Also User Mode Linux can
be seen as some kind of para-virtualization. For Xen, the paper [14] outlines
that although the OS must be modified for the guest, no changes to the
application binary interface (ABI) are necessary and hence no modifications are
required to guest applications. The paper shows some performance tests
shown, but it has to be kept in mind that they reflect program versions as of
2003.

Like with hardware-virtualization, also in a para-virtualized environment each
virtual machine runs its own kernel, has it's own dedicated memory, and it's
own disk space.

OS-Virtualization

The third technique is OS-virtualization. Examples for OS-virtualization are
OpenVZ, Linux-Vserver, and Sun Solaris Containers. The main difference
compared to hardware-virtualization and para-virtualization is that with OS-
virtualization only one single kernel runs on a physical server. This single kernel
is used by both the host operating system itself and the guest operating
systems. The idea behind that design is to avoid processing data twice as it is
often necessary when a guest is running its own kernel.

In [15], Herbert Pötzl, maintainer of Linux-Vserver gives an example what
happens when using multiple kernels: “a syscall to read a file is first processed
by the guest kernel, to be then handed upwards and result in an actual I/O by
the host kernel, which in turn has to hand back the data to the guest kernel
before it reaches the process.” There are also other benefits with this
technique. First, virtual machines do not require a dedicated amount of RAM.
Although a minimal amount of resources, like the amount of guaranteed
available RAM can be configured, other virtual machines can use these
resources if a virtual machine does not currently need them itself. In this way,
it does not happen that a virtual machine runs out of RAM, while another virtual
machine only uses 10 MB of 256 MB dedicated RAM. Second, RAM consumption
can be further decreased by loading shared libraries only once for multiple
virtual machines into the memory. And third, virtual machines can be started in
seconds, as they use the same kernel as the host, which is already running.

When using OS-virtualization only a single kernel runs for both the host and the
guest systems. This technique lacks the possibility to run different operating
system types in the virtual machines. But it is still possible to run different
Linux distributions in the guests, as long as they work with the virtualized

Page 3

kernel and the host itself runs on Linux.

HA cluster configurations in virtual
environments

The majority of today's high availability clusters is based on real physical
hardware. Because of the fact that virtualization is coming more and more
popular nowadays, one has to think about possible combinations of
virtualization and high availability. Until now only very few implementations
and literature is available about that topic but this is expected to rapidly
emerge in the near future.

The following scenarios (see also [16]) are shown below:

● virtual/virtual, single physical machine

● virtual/virtual, multiple physical machines

● physical/virtual

● virtual/physical

● physical/physical with fail-/switchover of virtual machines

Virtual/virtual, single physical machine

This setup builds an HA cluster between two or more virtual machines on a
single physical machine. The cluster manager itself is running directly in the
virtual machines. The physical server only hosts the virtual machines, like
shown in the figure below.

physical machine

virtualization

virtual
machine

virtual
machine

cluster
manager

cluster
manager

This setup does not protect against hardware failures. So the physical machine
itself is a SPOF (single point of failure). Other advantages normally offered by

Page 4

HA clusters like planned outage for maintenance purposes also get lost.

The remaining advantages mainly depend on the used virtualization type. If
hardware- or para-virtualization is used this setup brings additional protection
since separate instances of the operating system are running in the virtual
machines. It protects against a kernel panic in a virtual machine for example.
When using OS-virtualization the virtual machines on one physical machine are
effectively all running the same kernel and therefore are not protected against
a kernel panic. The ability of a cluster manager to monitor applications and do
local recoveries is not negatively affected by this setup.

As a conclusion this scenario is mainly useful for test environments. It is a very
comfortable way to test different HA cluster setups without requiring much
hardware. The paper [17] discusses the use of User Mode Linux for testing
purposes.

Virtual/virtual, multiple physical machines

In this scenario an HA cluster is built between two or more virtual machines,
each of them running on different physical machines. The SPOF of a single
physical machine is eliminated. Again, the cluster manager is running directly
in the virtual machine. The figure below shows this setup.

physical machine

virtualization

virtual
machine

cluster
manager

physical machine

virtualization

virtual
machine

cluster
manager

The main advantage of this setup lies in the area of easier management of the
cluster nodes. Since the cluster is running in a virtual machine it can be easily
moved to other physical machines. Moreover backup and recovery procedures
are traditionally simplified through the use of virtualization. However it is also
necessary that the physical server and its operating system have to be
included in backup, recovery and security update procedures as well.

Another advantage of this setup is the possibility to run multiple instances of
an application that normally is not able to run in one single OS instance. This is
possible when using multiple virtual machines with one application instance
each running on one physical machine.

Page 5

Physical/virtual

Here an HA cluster is established between a physical machine (normally active
node) and a virtual machine (normally passive node). The cluster manager is
on the one side running directly on the physical machine and on the other side
running in the virtual machine. Let's call the physical machine running the
virtual machines for standby nodes “passive node appliance”. The figure below
shows the setup.

physical
machine

physical machine

virtualization

virtual
machine

virtual
machine

cluster
manager

cluster
manager

physical
machine

cluster
manager

cluster
manager

active passive passive active

The advantage of this setup is the possibility to combine multiple standby
nodes on one physical machine whereas normally one would need a second
physical machine for each standby node. This offers great potential for cost
savings.

Imagine a company uses ten different active/passive HA cluster systems. When
the standby node is virtualized some form of overbooking for the standby
nodes can be done. Indeed it seems to be quite unlikely that all ten HA clusters
would ever need their standby nodes at the same time. However in case of fail-
/switchover of multiple clusters to the “passive node appliance” this physical
server may run out of resources. So appropriate sizing is very important.

Another advantage is the possibility to run different Linux distributions or even
operating systems on the “passive node appliance”. Disadvantageous is the
necessity to use different mechanisms for backup, recovery and security
updates for the physical machine and the “passive node appliance”.

Virtual/physical

This scenario is the counterpart to physical/virtual. In theory it is quite similar
except that the active and passive roles are interchanged. So the cluster
manager for the active node is normally running in the virtual machine, where
the cluster manager for the passive node is running on a physical machine.
Let's call the physical machine running the virtual machines “active node
appliance”.

Page 6

physical
machine

physical machine

virtualization

virtual
machine

virtual
machine

cluster
manager

cluster
manager

physical
machine

cluster
manager

cluster
manager

passive active active passive

In that case the “active node appliance” has to be sized as large to be able to
run all virtual machines at the same time. A reason for the deployment of that
scenario would be if someone likes to use a very powerful and redundant
hardware during normal operations for the “active node appliance”. For the
standby nodes each running on a dedicated physical machine, cheaper and
less powerful hardware could be used.

However it is questionable if cheap and less redundant hardware should be
used for HA clustering at all.

Physical/physical with fail-/switchover of virtual
machines

In contrast to the previously discussed scenarios, in this one the cluster
manager is always directly running on the physical machine. So the HA cluster
is built between two or more physical machines just like in traditional setups.
The difference is that applications are not running directly on the physical
machine but instead running in one or more virtual machines. Virtual machines
themselves are configured as a resource in the cluster and are managed by the
cluster manager. In case of a fail-/switchover the whole virtual machine is failed
over to the standby node, as shown in the figure below.

physical machine

cluster manager

physical machine

virtualization

virtual
machine

virtual
machine

cluster manager

Page 7

This setup offers some reasonable advantages. One advantage is the
simplification of the cluster configuration. Since the cluster manager is only
responsible for controlling the virtualization software, the configuration is kept
simple and straightforward. No complex resource hierarchies and no
complicated application integration procedures like sharing or synchronization
of configuration files are needed. One big advantage is the fact that
applications are running in a single virtual machine. Therefore managing
clustered applications is as easy as managing applications on a single virtual or
physical machine. The virtual machine itself does not even know anything
about the fact that it is actually clustered.

Another advantage is the possibility to cluster multiple virtual machines with
only one cluster manager. Instead of running multiple clusters, multiple virtual
machines can be consolidated on a single cluster.

A disadvantage is that a fail-/switchover can take longer than in a traditional
cluster. This is because it is not sufficient to relocate the application only in the
cluster but moreover the whole virtual machine has to be started on the other
cluster node. Therefore a whole operating system has to be started which
always takes longer than just starting an application. The time the virtual
machine takes to startup is significantly affected by the virtualization
technology used. When using hardware- or para-virtualization, the startup
procedure normally takes longer since usually the OS kernel has to be started
and in addition some form of virtual hardware always has to be initialized. If OS
virtualization is used instead, the overhead for starting the kernel and for
initializing the hardware is eliminated or significantly reduced. In that case the
overhead compared to starting a single application is often negligible.

Possible Pitfalls

Today's HA cluster solutions have different requirements for hardware,
software, network and storage. HA cluster managers have not been built to run
in virtual environments. This has to be considered when using HA clustering in
combination with virtualization.

It becomes clear when thinking about shared resource protection. According to
[18] the following mechanisms exist:

● Lock Manager

● SLM (Single Lock Manager)

● RLM (Redundant Lock Manager)

● DLM (Distributed Lock Manager)

● Quorum

Page 8

● Quorum Disk

● Real Quorum of Servers

● Tie-Breaker Mechanisms

● Fencing Mechanisms

● Resource Fencing

● System Reset/Node Fencing

Depending on the shared resource protection mechanism used, different
problems can be expected in virtual environments with that mechanisms.

Resource fencing guarantees an exclusive use of a shared resource. Many
cluster managers use SCSI-2 reservations or SCSI-3 persistent reservations to
assure this exclusive access for SCSI disks. These mechanisms can be already
critical and error-prone in traditional environments as mentioned in [19].
Especially when using virtual/physical or vice versa setups, SCSI reservations
can cause troubles. If used at all in a virtualized environment, intensive testing
is necessary.

Node fencing excludes a complete physical machine from the cluster, usually
by power cycling the cluster node. This is often called STONITH (Shoot The
Other Node In The Head) as mentioned in [20]. When using node fencing in a
virtualezed environment one has to avoid situations where multiple “virtual”
cluster nodes are excluded by power cycling a single physical machine.

In general one should always remember the key HA principle: simplicity (see
[21] p. 101). The more complex an HA cluster gets, the more potential failures
can occur. Indeed using virtualization itself adds complexity and therefore
potential for additional failures. A short example: device drivers. When using
hardware virtualization often two device drivers are needed, called double
device driver model. One in the host system accessing the real hardware, and
one in the virtual machine accessing the host's hardware through a virtual
device driver. Therefore errors can occur in two different device drivers. At this
point, it is noticeable that [22] has shown that device drivers have error rates
up to three to seven times higher than the rest of the kernel. When using para-
virtualization the split device driver model is often used. In that case again
multiple drivers have to cooperate in a smooth and reliable way.

Future

Combining virtualization and HA clusters is just in its beginning stages at the
moment. Until now only very few ready-to-run solutions exist.

Real-time migration is currently becoming increasingly popular for virtualization

Page 9

technologies. It allows to freeze a virtual machine at a particular time and
restore it on another physical machine while preserving memory, processes
and network connections. In best case the client will not notice any outages
during migration.

This feature can be useful for switchovers in HA environment since the outage
normally caused by starting and stopping virtual machines can be minimized.
Moreover the use of real-time migration in case of failover in HA environment
could be an interesting approach too.

Examples

Below a cluster with OpenVZ, Heartbeat [23], and DRBD [24] is shown, as well
as some references to other cluster examples.

Cluster with OpenVZ, Heartbeat, and DRBD

It possible to build a physical/physical scenario with fail-/switchover of virtual
machines with the OS-virtualization OpenVZ, the cluster manager Heartbeat
and the data replication DRBD (Distributed Replicated Block Device).

Let's assume a two node cluster with Heartbeat installed directly on both
nodes' OS on the physical machines. OpenVZ is able to start and stop all
currently configured virtual machines, called VPSs (Virtual Private Servers),
with a single init script called /etc/init.d/vz. This init script is configured as a
cluster resource in Heartbeat. As a result in case of a switchover Heartbeat
simply stops all VPSs on one node and starts them again on the other node.

DRBD is used to share data and configuration files for the VPSs and is also
configured as a resource in Heartbeat. At least the following directories have to
be shared when using OpenVZ:

● /vz – contains the VPSs

● /etc/sysconfig/vz-scripts/, /etc/sysconfig/vz – configuration files for VPSs

● /var/vzquota – quota information for VPSs

It is not necessary to configure the IP addresses of the VPSs as a resource in
the cluster manager. When a VPS is started the command /usr/sbin/arpsend is
called by OpenVZ and sends out a gratuitous arp. By default only one
gratuitous arp is sent out, but this value can be increased in the script
/usr/lib/vzctl/scripts/vps-functions.

Page 10

Other cluster examples

There are also other resources available that describe concrete combinations of
HA clustering and virtualization:

● [25] describes how to setup a cluster with Linux-Vserver, Heartbeat and
DRBD.

● In [26] it is mentioned how the RedHat Cluster Suite can be used to run
inside a Xen Guest. The cluster filesystem GFS is used this example.

● In a posting [27] on the Linux-HA mailing list a Heartbeat 2.X resource
agent for Xen guests has been published.

Bibliography

[1] James Bottomley. The Risks of Over-Virtualization - why virtualization is not
high availability. LinuxWorld Magazine, February, 27th 2006. http://linux.sys-
con.com/read/183014.htm

[2] http://fabrice.bellard.free.fr/qemu/

[3] http://www.vmware.com/

[4] http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[5] http://denali.cs.washington.edu/

[6] http://user-mode-linux.sourceforge.net/

[7] http://openvz.org/

[8] http://linux-vserver.org/

[9] http://www.sun.com/software/solaris/ds/utilization.jsp

[10] Chris Wright. Virtually Linux - Virtualization Techniques in Linux. In
Proceedings of the Linux Symposium, Ottawa, Ontario, Canada, July 21th-24th
2004. http://www.linuxsymposium.org/proceedings/reprints/Reprint-Wright-
OLS2004.pdf

[11] Nadir Kiyanclar. A Survey of Virtualization Techniques - Focusing on Secure
On-Demand Cluster Computing. University of Illinois at Urbana-Champaign,
National Center for Supercomputing Applications, November 2nd 2005.
http://citeseer.ist.psu.edu/733373.html

[12] A. Whitaker and M. Shaw and S. Gribble. Denali: Lightweight virtual
machines for distributed and networked applications. In Proceedings of the

Page 11

USENIX Annual Technical Conference, Monterey, CA, June 2002.
http://citeseer.ifi.unizh.ch/whitaker02denali.html

[13] Moshe Bar. Xen, the virtual machine monitor. Free Software Magazine,
Issue 5, June 2005. http://www.freesoftwaremagazine.com/articles/focus-xen

[14] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebar, Ian Pratt and Andrew Warfield. Xen and the Art of
Virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), New York, NY, USA, October 2003.
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2003-xensosp.pdf

[15] Herbert Pötzl. Linux-VServer - Resource efficient context isolation. Free
Software Magazine, Issue 5, June 2005.
http://www.freesoftwaremagazine.com/articles/focus-linux_vserver

[16] LifeKeeper for Linux in Virtual Machine Environments. White Paper,
SteelEye Technology, Inc., Palo Alto, CA, USA, 2005.
http://licensing.steeleye.com/support/download_get.php/LKinVirtualEnvironmen
ts.pdf?dir=0&file=LKinVirtualEnvironments.pdf

[17] Armin M. Warda. Virtuelle Testumgebungen mit User Mode Linux.
Postbank Systems AG, Oktober 2004. http://www.user-mode-
linux.org/~jdike/armin/Virtuelles-UML-Labor.pdf

[18] Werner Fischer. Implementation of a Disaster Resilient Linux Cluster with
Storage Subsystem Based Data Replication. Master's thesis, Fachhochschule
Hagenberg, Computer- und Mediensicherheit, Hagenberg, Austria, September
2004. http://www.wefi.net/thesis/diploma_thesis_werner_fischer.pdf

[19] Alan Robertson. Resource fencing using STONITH. 2001.

[20] http://www.linux-ha.org/STONITH

[21] Evan Marcus and Hal Stern. Blueprints for High Availability. Wiley
Publishing, Indianapolis, IN, USA, second edition, 2003.

[22] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. An Empirical Study of Operating Systems Errors. Stanford University,
2001. http://www.stanford.edu/~engler/metrics-sosp-01.ps

[23] http://www.linux-ha.org/

[24] http://www.drbd.org/

[25] http://linux-vserver.org/Vserver+DRBD

[26] http://people.redhat.com/pcaulfie/docs/xencluster.html

Page 12

[27] http://lists.linux-ha.org/pipermail/linux-ha/2006-March/018798.html

Page 13

	Problems of virtualization
	Types of virtualization
	Hardware-Virtualization
	Para-Virtualization
	OS-Virtualization

	HA cluster configurations in virtual environments
	Virtual/virtual, single physical machine
	Virtual/virtual, multiple physical machines
	Physical/virtual
	Virtual/physical
	Physical/physical with fail-/switchover of virtual machines
	Possible Pitfalls
	Future

	Examples
	Cluster with OpenVZ, Heartbeat, and DRBD
	Other cluster examples

